Home » 
        Python » 
        Python Programs
    
    
    How to count unique values per groups with Pandas?
    
    
    
    
	    Given a DataFrame, we have to count unique values per groups.
	    
		    By Pranit Sharma Last updated : September 20, 2023
	    
    
    Columns are the different fields that contain their particular values when we create a DataFrame. We can perform certain operations on both rows & column values. In this article, we are going to learn how to count unique values in a column.
    Unique values are those values that only occur once.
    Problem statement
    Given a DataFrame, we have to count unique values per groups.
    Counting unique values per groups with Pandas
    For this purpose, we are going to use a pandas.Series.unique() method inside pandas. This method will remove all the occurrences except the first occurrence. This method selects the specified column passed as a parameter inside it and returns the unique values inside it.
    Syntax:
Series.unique()
# or
DataFrame['col_name'].unique()
    
        Note
        To work with pandas, we need to import pandas package first, below is the syntax:
import pandas as pd
     
    Let us understand with the help of an example.
    Python program to count unique values per groups with Pandas
# Importing pandas package
import pandas as pd
# Create a dictionary for the dataframe
dict = {
    'Name': ['Sudhir', 'Pranit', 'Ritesh','Sanskriti', 'Rani','Megha','Suman','Ranveer'],
    'Age': [16, 27, 27, 29, 29,22,19,20],
    'Marks': [40, 24, 50, 48, 33,40,39,48]
}
# Converting Dictionary to Pandas Dataframe
df = pd.DataFrame(dict)
# Display original DataFrame
print("Original DataFrame:\n",df,"\n")
# Selecting column Age and finding unique values
result = df['Age'].unique()
# Display result
print("Unique values in Age are:\n",result)
    
    Output
    The output of the above program is:
     
    Python Pandas Programs »
    
    
    
    
    
  
    Advertisement
    
    
    
  
  
    Advertisement