×

Python Tutorial

Python Basics

Python I/O

Python Operators

Python Conditions & Controls

Python Functions

Python Strings

Python Modules

Python Lists

Python OOPs

Python Arrays

Python Dictionary

Python Sets

Python Tuples

Python Exception Handling

Python NumPy

Python Pandas

Python File Handling

Python WebSocket

Python GUI Programming

Python Image Processing

Python Miscellaneous

Python Practice

Python Programs

Normalize a SciPy Sparse Matrix

In this tutorial, we will learn about an efficient way to normalize a SciPy sparse matrix with the help of example. By Pranit Sharma Last updated : April 19, 2023

What Does Normalize a SciPy Sparse Matrix Mean?

Normalizing a matrix means scaling a value of the matrix in such a way that the range of rows and columns lies between 1 and 0.

Here, we have a SciPy sparse matrix, and we need to normalize this matrix.

How to Normalize a SciPy Sparse Matrix?

To normalize a SciPy sparse matrix, you can simply use sklearn.preprocessing.normalize() method which is used to normalize vectors or matrices. It takes a parameters norm which is the norm to use to normalize each non-zero sample.

Syntax

Use the following syntax to normalize a SciPy sparse matrix:

sklearn.preprocessing.normalize(X, norm='l2', *, axis=1, copy=True, return_norm=False)

Python Program to Normalize a SciPy Sparse Matrix

# Import numpy
import numpy as np

# Import scipy sparse
import scipy.sparse as sp

# Import scikit-learn preprocessing
from sklearn.preprocessing import normalize

# Creating a sparse matrix
row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
arr = sp.csr_matrix((data, (row, col)), shape=(3, 3)).toarray()

# Display original array
print("Original array:\n", arr, "\n")

# Normalizing matrix
res = normalize(arr, norm="l1", axis=1)

# Display result
print("Result:\n", res)

Output

Normalize a SciPy Sparse Matrix | Output

In this example, we have used the following Python basic topics that you should learn:

Python NumPy Programs »

Advertisement
Advertisement

Comments and Discussions!

Load comments ↻


Advertisement
Advertisement
Advertisement

Copyright © 2025 www.includehelp.com. All rights reserved.