Home » Java programs » Java Array programs

In this java program, we are going to learn **how to find multiplication of two matrices**? Here, we are taking input of two matrices and printing their multiplication.

Submitted by **IncludeHelp**, on November 02, 2017

**Given two matrices and find their multiplication in third matrix and print the matrix using Java program.**

**Example:**

Input (Matrix 1)25 52 65 85Input (Matrix 2)96 65 36 85Output (Multiplication Matrix)4272 6045 9300 11450

import java.util.Scanner; public class MatrixMultiplication { public static void main(String args[]) { int n; //object of scanner class Scanner input = new Scanner(System.in); //input base (number of rows and cols) System.out.print("Enter the base the matrices : "); n = input.nextInt(); //create two_D array (matrix) objects int[][] a = new int[n][n]; int[][] b = new int[n][n]; int[][] c = new int[n][n]; //input matrix 1 System.out.println("Enter the elements of 1st Matrix row wise \n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { a[i][j] = input.nextInt(); } } //input matrix 2 System.out.println("Enter the elements of 2nd mrtix row wise \n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { b[i][j] = input.nextInt(); } } //multiplication logic System.out.println("Multiplying both sthe matrices..."); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = c[i][j] + a[i][k] * b[k][j]; } } } //print final/result matrix System.out.println("The product of the matrices is : "); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(c[i][j] + " "); } System.out.println(); } input.close(); } }

**Output 1**

Enter the base the matrices : 5 Enter the elements of 1st Matrix row wise 12 45 56 85 25 12 41 20 25 65 36 54 52 58 68 32 12 20 12 32 45 87 45 65 35 Enter the elements of 2nd Matrix row wise 45 65 25 35 14 12 12 12 12 12 32 31 36 35 34 52 51 58 57 59 63 65 69 68 64 Multiplying both the matrices... The product of the matrices is : 8867 9016 9511 9465 9227 7067 7392 7447 7457 6975 11232 11978 11476 11658 10694 4864 5536 4568 4824 4028 10094 10954 9974 10279 9279

**Output 2**

Enter the base the matrices : 2 Enter the elements of 1st Matrix row wise 25 52 65 85 Enter the elements of 2nd Matrix row wise 96 65 36 85 Multiplying both the matrices... The product of the matrices is : 4272 6045 9300 11450

Are you a blogger? Join our Blogging forum.

Comments and Discussions

We are using Google to publish ads on our website; Google has its own privacy policies. They may save log, cookies on your system. Google may also collect information of your system like IP address, region, city, country. For more details please go through the Google’s privacy policy.