# Java program to multiply two matrices

In this java program, we are going to learn how to find multiplication of two matrices? Here, we are taking input of two matrices and printing their multiplication.
Submitted by IncludeHelp, on November 02, 2017

Given two matrices and find their multiplication in third matrix and print the matrix using Java program.

Example:

```Input (Matrix 1)
25 52
65 85

Input (Matrix 2)
96 65
36 85

Output (Multiplication Matrix)
4272 6045
9300 11450
```

## Program to find matrix multiplication using java program

```import java.util.Scanner;

public class MatrixMultiplication {
public static void main(String args[]) {
int n;
//object of scanner class
Scanner input = new Scanner(System.in);

//input base (number of rows and cols)
System.out.print("Enter the base the matrices : ");
n = input.nextInt();

//create two_D array (matrix) objects
int[][] a = new int[n][n];
int[][] b = new int[n][n];
int[][] c = new int[n][n];

//input matrix 1
System.out.println("Enter the elements of 1st Matrix row wise \n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
a[i][j] = input.nextInt();
}
}

//input matrix 2
System.out.println("Enter the elements of 2nd mrtix row wise \n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
b[i][j] = input.nextInt();
}
}

//multiplication logic
System.out.println("Multiplying both sthe matrices...");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] = c[i][j] + a[i][k] * b[k][j];
}
}
}

//print final/result matrix
System.out.println("The product of the matrices is : ");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.print(c[i][j] + " ");
}
System.out.println();
}
input.close();
}
}
```

Output 1

```Enter the base the matrices : 5

Enter the elements of 1st Matrix row wise

12 45 56 85 25
12 41 20 25 65
36 54 52 58 68
32 12 20 12 32
45 87 45 65 35
Enter the elements of 2nd Matrix row wise

45 65 25 35 14
12 12 12 12 12
32 31 36 35 34
52 51 58 57 59
63 65 69 68 64

Multiplying both the matrices...
The product of the matrices is :
8867  9016  9511  9465  9227
7067  7392  7447  7457  6975
11232 11978 11476 11658 10694
4864  5536  4568  4824  4028
10094 10954 9974  10279 9279
```

Output 2

```Enter the base the matrices : 2

Enter the elements of 1st Matrix row wise

25 52
65 85
Enter the elements of 2nd Matrix row wise

96 65
36 85
Multiplying both the matrices...
The product of the matrices is :
4272 6045
9300 11450
```

Preparation