×

Python Tutorial

Python Basics

Python I/O

Python Operators

Python Conditions & Controls

Python Functions

Python Strings

Python Modules

Python Lists

Python OOPs

Python Arrays

Python Dictionary

Python Sets

Python Tuples

Python Exception Handling

Python NumPy

Python Pandas

Python File Handling

Python WebSocket

Python GUI Programming

Python Image Processing

Python Miscellaneous

Python Practice

Python Programs

When to apply(pd.to_numeric) and when to astype(np.float64)

Given a pandas dataframe, we have to learn when to apply(pd.to_numeric) and when to astype(np.float64). By Pranit Sharma Last updated : October 03, 2023

Pandas is a special tool that allows us to perform complex manipulations of data effectively and efficiently. Inside pandas, we mostly deal with a dataset in the form of DataFrame. DataFrames are 2-dimensional data structures in pandas. DataFrames consist of rows, columns, and data.

There are multiple data types that are supported by pandas.

  • Int
  • Float
  • Object
  • Boolean
  • Datetime

apply(pd.to_numeric) and when to astype(np.float64)

All these data types can be converted into some other data types using the astype() method.

Technically, if we try to convert a string to a numerical value it will definitely either be converted to a numeric value or a nan value. The astype(float) method raises a value error in these types of situations and hence we need pandas.to_numeric() method in this case.

Let us understand with the help of an example,

Python program to demonstrate when to apply(pd.to_numeric) and when to astype(np.float64)

# Importing pandas package
import pandas as pd

# Importing numpy package
import numpy as np

# Creating dictionary
d = {
    'a':[1,3,5,7,9],
    'b':['a','b','c','d','e'],
    'c':[0,0,0,0,0],
    'd':[0,0,0,0,0]
}

# Creating DataFrame
df = pd.DataFrame(d)

# Display original DataFrame
print("Original DataFrame :\n",df,"\n")

# converting dtype of column b using astype()
df['b']= df['b'].astype(float)

Output

The output of the above program is:

Example 1: apply(pd.to_numeric) and when to astype(np.float64)

Here comes the use of pandas.to_numeric() method.

# Importing pandas package
import pandas as pd

# Importing numpy package
import numpy as np

# Creating dictionary
d = {
    'a':[1,3,5,7,9],
    'b':['a','b','c','d','e'],
    'c':[0,0,0,0,0],
    'd':[0,0,0,0,0]
}

# Creating DataFrame
df = pd.DataFrame(d)

# Display original DataFrame
print("Original DataFrame :\n",df,"\n")

# converting dtype of column b using astype()
df['b'] = pd.to_numeric(df['b'], errors='coerce')

# Display result
print("Modified DataFrame:\n",df)

Output

The output of the above program is:

Example 2: apply(pd.to_numeric) and when to astype(np.float64)

Python Pandas Programs »

Advertisement
Advertisement

Comments and Discussions!

Load comments ↻


Advertisement
Advertisement
Advertisement

Copyright © 2025 www.includehelp.com. All rights reserved.