Home » Machine Learning/Artificial Intelligence

# Fuzzy Logic System Architecture in Artificial Intelligence

This article is about the **Architecture of the Fuzzy Logic System (FL System)**. In this article, we are going to study about the **different components of the FL System** and will define each of them all in detail.

Submitted by Monika Sharma, on June 15, 2019

The **Fuzzy Logic System** is a system which uses Fuzzy logic for reasoning. Fuzzy Logic is a very efficient method for performing human-like reasoning in conditions with uncertainty.

If we take a look at the **architecture of the Fuzzy Logic system**, then we find that it is composed of the following four major parts:

- Knowledge Base
- Fuzzification Module
- Inference Engine
- Defuzzification Module

Now, let us have a look at each of them one by one:

### 1) Knowledge Base

Every system which works on Artificial Intelligence has a Knowledgebase. The Fuzzy logic system is also an AI-based system, and thus it also has its own knowledge base where all the information and data for the reference by the agent is stored. In the Knowledge Base of Fuzzy Logic system, the rules of the Fuzzy Logic set theory are stored. Their rules are present in the form of an if-else ladder. So, whenever the system tries to solve any problem, this if-else ladder is executed and the system then works on the rule that it gets from the matched condition.

### 2) Fuzzification Module

The fuzzification module performs the conversion of the input information. The information is converted into a form which the system can search for in its Knowledge Base. This is done by splitting the sentences into simpler terms and extracting the main terms out of it which are then sent to the inference engine for further processing.

### 3) Inference Engine

The Inference engine is the main component of the Fuzzy Logic System. If compared with the computer parts, our inference engine is the same as the processor of the computer. All the processing of the information takes place inside it. The task of the inference engine is to draw a valid result by analyzing and concluding all the information that it gets from the fuzzification module. This is again done by referring to the rules and prior information present in the Knowledge Base. The final conclusions made are then sent for further modification to the defuzzification module.

### 4) Defuzzification Module

The Defuzzification Module receives the processed information from the Inference Engine. This information contains the conclusion, but still, it is not in the form in which it was received, i.e. user-understandable form. So, the defuzzification module again converts this information into a form which is well accepted by the user.

TOP Interview Coding Problems/Challenges

- Run-length encoding (find/print frequency of letters in a string)
- Sort an array of 0's, 1's and 2's in linear time complexity
- Checking Anagrams (check whether two string is anagrams or not)
- Relative sorting algorithm
- Finding subarray with given sum
- Find the level in a binary tree with given sum K
- Check whether a Binary Tree is BST (Binary Search Tree) or not
- 1[0]1 Pattern Count
- Capitalize first and last letter of each word in a line
- Print vertical sum of a binary tree
- Print Boundary Sum of a Binary Tree
- Reverse a single linked list
- Greedy Strategy to solve major algorithm problems
- Job sequencing problem
- Root to leaf Path Sum
- Exit Point in a Matrix
- Find length of loop in a linked list
- Toppers of Class
- Print All Nodes that don't have Sibling
- Transform to Sum Tree
- Shortest Source to Destination Path

Comments and Discussions

**Ad:**
Are you a blogger? Join our Blogging forum.