# P and NP problems and solutions | Algorithms

In this article, we learn about the **concept of P problems, NP problems, NP hard problems and NP complete problems**.

Submitted by Shivangi Jain, on July 29, 2018

## P Problems

**P** is the set of all the decision problems solvable by deterministic algorithms in polynomial time.

## NP Problems

**NP** is the set of all the decision problems that are solvable by non - deterministic algorithms in polynomial time.

Since deterministic algorithms are just the special case of non - deterministic ones, so we can conclude that P is the subset of NP.

**Relation between P and NP**

### NP Hard Problem

A problem L is the NP hard if and only if satisfiability reduces to L. A problem is NP complete if and only if L is the NP hard and L belongs to NP.

Only a decision problem can be NP complete. However, an optimization problem may be the NP hard. Furthermore if L1 is a decision problem and L2 an optimization problem, then it is possible that L1 α L2. One can trivially show that the knapsack decision problem reduces to knapsack optimization problem. For the clique problem one can easily show that the clique decision problem reduces to the clique optimization problem. In fact, one can also show that these optimization problems reduce to their corresponding decision problems.

### NP Completeness Problem

Polynomial time reductions provide a formal means for showing that one problem is at least as hard as another, within a polynomial time factor. This means, if L1 <= L2, then L1 is not more than a polynomial factor harder than L2. Which is why the “less than or equal to” notation for reduction is mnemonic. NP complete are the problems whose status are unknown.

**Some of the examples of NP complete problems are:**

**1. Travelling Salesman Problem: **

Given n cities, the distance between them and a number D, does exist a tor programme for a salesman to visit all the cities so that the total distance travelled is at most D.

**2. Zero One Programming Problem:**

Given m simultaneous equations,

**3. Satisfiability Problem:**

Given a formula that involves propositional variables and logical connectives.

A language L is the subset [0, 1]* is NP complete if,

- L belongs to NP and
- L' ← L for every L' belongs to NP

All NP complete problems are NP hard, but some NP hard problems are not known to be NP complete.

If NP hard problems can be solved in polynomial time, then all the NP complete problems can be solved in polynomial time.

Related Tutorials

- Introduction to Algorithms
- Introduction to Greedy Strategy in Algorithms
- Stability in sorting
- External Merge Sorting Algorithm
- Radix Sort and its Algorithm
- Bucket Sort Algorithm
- Bubble sort Algorithm, Flow Chart and C++ Code
- Insertion sort Algorithm, flowchart and C, C++ Code
- Merge Sort | One of the best sorting algorithms used for large inputs
- Binary Search in C, C++
- Randomized Binary Search
- Meta Binary Search | One-sided Binary Search
- Difference between Linear Search and Binary Search
- Binary Search in String
- Variants of Binary Search
- Sieve of Eratosthenes to find prime numbers
- Optimal Merge Pattern (Algorithm and Example)
- Given an array of n numbers, Check whether there is any duplicate or not
- Finding the missing number
- Find the number occurring an odd number of times
- Find the pair whose sum is closest to zero in minimum time complexity
- Find three elements in an array such that their sum is equal to given element K
- Bitonic Search Algorithm
- Check whether a number is Fibonacci or not
- Segregate even and odd numbers in minimum time complexity
- Find trailing zeros in factorial of a number
- Find Nearest Greatest Neighbours of each element in an array
- Interpolation search algorithm
- Floor and ceil of an element in an array using C++
- Two Elements whose sum is closest to zero
- Find a pair with a given difference
- Count number of occurrences (or frequency) in a sorted array
- Find a Fixed Point (Value equal to index) in a given array
- Find the maximum element in an array which is first increasing and then decreasing
- Dynamic Programming (Components, Applications and Elements)
- Algorithm for fractional knapsack problem
- Algorithm and procedure to solve a longest common subsequence problem
- Find the Nth Fibonacci number | C++
- Longest Common Subsequence using Dynamic programming (DP)
- Longest Increasing Subsequence using Dynamic programming (DP)
- Find the maximum sub-array sum using KADANE'S ALGORITHM
- Non-intersecting chords using Dynamic Programming (DP)
- Edit Distance using Dynamic Programming (DP)
- Finding Ugly Number using Dynamic Programming (DP)

- Backtracking (Types and Algorithms)
- 4 Queen's problem and solution using backtracking algorithm
- N Queen's problem and solution using backtracking algorithm
- Find the GCD (Greatest Common Divisor) of two numbers using EUCLID'S ALGORITHM
- Compute the value of A raise to the power B using Fast Exponentiation
- Implement First Come First Served (FCFS) CPU Scheduling Algorithm using C program
- Implementations of FCFS scheduling algorithm using C++
- Implementation of Shortest Job First (SJF) Non-Preemptive CPU scheduling algorithm using C++
- Implementation of Shortest Job First (SJF) Preemptive CPU scheduling algorithm using C++
- Implementation of Priority scheduling (Pre-emptive) algorithm using C++
- Implementation of Priority scheduling (Non Pre-emptive) algorithm using C++
- Implementation of Round Robin CPU Scheduling algorithm using C++
- Analysis of LRU page replacement algorithm and Belady's anomaly
- Branch and Bound
- Find the roots of a complex polynomial equation using Regula Falsi Method in C
- Divide and Conquer Paradigm (What it is, Its Applications, Pros and Cons)
- Strassen's Matrix Multiplication in algorithms
- Huffman Coding (Algorithm, Example and Time complexity)
- Tournament Tree and their properties
- Deterministic and Non Deterministic Algorithms
- Lower Bound Theory
- Non Recursive Tree Traversal Algorithm
- Line Drawing Algorithm
- 2 – 3 Trees Algorithm
- Midpoint Circle Algorithm
- Reliability design problem
- Removing consecutive duplicates from a string
- Fast Exponentiation using Bitmasking
- Egg dropping problem using Dynamic Programming (DP)
- Wild card matching problem using Dynamic programming (DP)
- Compute sum of digits in all numbers from 1 to N for a given N
- Minimum jumps required using Dynamic programming (DP)
- Graph coloring problem's solution using backtracking algorithm
- Breadth First Search (BFS) and Depth First Search (DFS) Algorithms
- Travelling Salesman Problem
- Kruskal's (P) and Prim's (K) Algorithms
- Multistage graph problem with forward approach and backward approach algorithms
- Floyd Warshall algorithm with its Pseudo Code

What's New

- C Language MCQs
- Python MCQs
- Perl MCQs
- MongoDB MCQs
- Java MCQs
- C# MCQs
- Scala MCQs
- Blockchain MCQs
- AutoCAD MCQs
- PHP MCQs
- JavaScript MCQs
- jQuery MCQs
- ReactJS MCQs
- AngularJS MCQs
- JSON MCQs
- Ajax MCQs
- SASS MCQs
- HTML MCQs
- Advanced CSS MCQs
- CSS MCQs
- OOPs MCQs
- PL/SQL MCQs
- SQL MCQs
- Oracle MCQs
- SQLite MCQs
- MS Word MCQs
- Software Engineering MCQs
- Operating System MCQs
- Project Management MCQs
- Data Analytics and Visualization MCQs
- MIS MCQs
- Linux MCQs
- WordPress MCQs
- Blogging MCQs
- Marketing MCQs

- Generally Accepted Accounting Principles MCQs
- Bills of Exchange MCQs
- Business Environment MCQs
- Sustainable Development MCQs
- Marginal Costing and Absorption Costing MCQs
- Globalisation MCQs
- Indian Economy MCQs
- Retained Earnings MCQs
- Depreciation MCQs
- Partnership MCQs
- Sole Proprietorship MCQs
- Goods and Services Tax (GST) MCQs
- Cooperative Society MCQs
- Capital Market MCQs
- Business Studies MCQs
- Basic Accounting MCQs
- MIS Executive Interview Questions
- Go Language Interview Questions

Top Interview Coding Problems/Challenges!

- Run-length encoding (find/print frequency of letters in a string)
- Sort an array of 0's, 1's and 2's in linear time complexity
- Checking Anagrams (check whether two string is anagrams or not)
- Relative sorting algorithm
- Finding subarray with given sum
- Find the level in a binary tree with given sum K
- Check whether a Binary Tree is BST (Binary Search Tree) or not
- 1[0]1 Pattern Count
- Capitalize first and last letter of each word in a line
- Print vertical sum of a binary tree
- Print Boundary Sum of a Binary Tree
- Reverse a single linked list
- Greedy Strategy to solve major algorithm problems
- Job sequencing problem
- Root to leaf Path Sum
- Exit Point in a Matrix
- Find length of loop in a linked list
- Toppers of Class
- Print All Nodes that don't have Sibling
- Transform to Sum Tree
- Shortest Source to Destination Path

Comments and Discussions!