×

Python Tutorial

Python Basics

Python I/O

Python Operators

Python Conditions & Controls

Python Functions

Python Strings

Python Modules

Python Lists

Python OOPs

Python Arrays

Python Dictionary

Python Sets

Python Tuples

Python Exception Handling

Python NumPy

Python Pandas

Python File Handling

Python WebSocket

Python GUI Programming

Python Image Processing

Python Miscellaneous

Python Practice

Python Programs

Python - Matrix Operations with SciPy

By IncludeHelp Last updated : September 14, 2024

Python SciPy provides various methods for performing different matrix operations.

Let us understand some examples of matrix operations using SciPy:

Example 1: Matrix Inversion

To find the matrix inversion, we can use the inv() method of scipy.linalg package.

# Import numpy
import numpy as np

# Import inv function from scipy
from scipy.linalg import inv

# Creating an array
arr = np.array([[1, 2], [3, 4]])

# Display original array
print("Original array:\n", arr, "\n")

# Finding inverse of array
arr_inv = inv(arr)

# Display result
print("Inverse matrix:\n", arr_inv)

Output

Original array:
 [[1 2]
 [3 4]] 

Inverse matrix:
 [[-2.   1. ]
 [ 1.5 -0.5]]

Example 2: Solving Linear Systems

Use solve() method of scipy.linalg module to solve a system of linear equations. This method takes two input matrices and convert them into a system of linear equation.

# Import numpy
import numpy as np

# Import solve function from scipy
from scipy.linalg import solve

# Creating square matrix
arr1 = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])

# Creating right-hand side vector
arr2 = np.array([2, 4, -1])

# Display square matrix
print("Square matrix:\n", arr1, "\n")

# Display right-hand side vector
print("Right-hand side vector:\n", arr2, "\n")

# Solving linear equations (represented by arrays)
res = solve(arr1, arr2)

# Display result
print("Result:\n", res)

Output

Square matrix:
 [[ 3  2  0]
 [ 1 -1  0]
 [ 0  5  1]] 

Right-hand side vector:
 [ 2  4 -1] 

Result:
 [ 2. -2.  9.]

Example 3: Constructing Sparse Matrices

To create sparse matrix, we can use csr_matrix() method from scipy.sparse module. The sparse csr matrix can be created in the following ways:

  • As a dense matrix
  • With another sparse matrix
  • As empty matrix
  • With data, row_indices and column_indices
  • With data, indices, Indptr and shape attributes

Let us see how we can create a sparse csr matrix using data, indices of rows, and indices of columns.

# Import numpy
import numpy as np

# Import csr_matrix function
from scipy.sparse import csr_matrix

# Defining the data, row, and column
data = np.array([1, 2, 3, 4])
row = np.array([0, 0, 1, 2])
col = np.array([0, 2, 2, 0])

# Defining the shape of the matrix
shape = (3, 3)

# Creating the CSR matrix
csr = csr_matrix((data, (row, col)), shape).toarray()

# Display created csr matrix
print("Created CSR matrix:\n", csr)

Output

Created CSR matrix:
 [[1 0 2]
 [0 0 3]
 [4 0 0]]

Python SciPy Programs »

Advertisement
Advertisement

Comments and Discussions!

Load comments ↻


Advertisement
Advertisement
Advertisement

Copyright © 2025 www.includehelp.com. All rights reserved.